CEBORA MQTT Instruction manual

Main Index

1 Introduction	2
1.1 Network connection	2
1.2 Generator name	2
2 MQTT configuration	4
2.1 Customisable MQTT parameters	4
2.2 Other preset MQTT parameters	
3 Operation	
3.1 Status message	6
3.2 Welding message	
4 Test	

1 Introduction

This document refers to KINGSTAR and WIN TIG MIG generators with software version **1.8** or higher that include support for MQTT **3.1.1** client version.

For REST API documentation refer to the specific document version **1.8.1** or later.

1.1 Network connection

Configure the LAN network by following the instructions with code 3301067A and by installing the trusted root certificate in all client computers.

By typing the generator address in a browser, the homepage of the web app should open without displaying any warning about the trustworthiness of the site and in the address bar there should be a closed padlock icon.

1.2 Generator name

On the homepage, among the machine general information, the fields PLANT and CELL are visible, which must be configured appropriately using the virtual keyboard on the generator panel:

 $\texttt{MENU} \rightarrow \texttt{Settings} \rightarrow \texttt{Generator} \text{ Name}$

Nome Generatore		15:07:33 26/05/21
MIG Short SG2 (G3Si1) 0.9 mm Ar + 7	18% CO2	
Impianto	MyPlant	
Cella	MyCell	

The ARTICLE and SERIAL NUMBER codes are preset by the manufacturer and cannot be changed.

2 MQTT configuration

2.1 Customisable MQTT parameters

Use the virtual keyboard from the generator panel to set the server connection parameters:

MENU → Settings → MQTT Broker URL Username Password

The generator uses as *client-id* the string composed by COMPANY-SERIAL NUMBER and as *topic* prefix the fields PLANT and CELL. In this example:

client-id:	CEBORA-P2631A
topic-prefix:	MyPlant/MyCell/

2.2 Other preset MQTT parameters

There are also other parameters of the MQTT configuration that are not currently modifiable from the user interface, in particular:

Quality of Service:

QoS0	the message is sent once without ACK (<i>default</i>)
QoS1	the message is sent until an ACK is received
QoS2	dual handshake to ensure only one message is sent

Connection Type:

http	non-secure connection – default port 1883
------	---

https secure connection* – default port 8883

Port number:

Only the default ones.

Press the 0N button to activate the MQTT client in the generator.

Configurazione MQTT	SR ↔ ₩	16:01:09 23/06/21
Topic Prefix: MyPlant/MyCell		
URL del Broker	192.168.14.70	ON
Nome Utente	user	
Password	pwd	

If the client successfully connects to the server, a fixed MQTT icon appears in the top status bar.

If the client is failing to connect to the server, the MQTT icon flashes; the client retries the connection at regular intervals as long as the ON button is active.

3 Operation

3.1 Status message

For each status change (OPERATIONAL, WARNING, ERROR, etc.) the generator automatically sends a message identified by the topic <topic-prefix>/state containing the general machine status, the welding status and the list (if any) of active errors using the JSON format in the payload.

```
{
   "id" : "CEBORA-P2631A",
   "processState" : {
      "active" : false,
      "welding" : false
   },
   "systemState" : "operational"
}
```

The payload is identical to what you can obtain via the REST API:

GET https://<power-source-ip>/api/state

enriched with the "id" field valorised with the MQTT client identifier.

This message is *retained* and therefore is still sent to clients that subscribe after the generator has connected.

In case of sudden disconnection from the network, the generator prepares the broker with its *Last Will and Testament* (LWT), which consists in sending to all subscribed clients the status message with the field "systemState": "offline".

The possible values of the "systemState" field are: init, operational, warning, error, poweroff, update, reset, offline.

In the operational state the generator can perform the weld which is signalled with Boolean flags:

active: welding process in progress (also includes the off-arc phases such as pregas and postgas)

welding: arc welding in progress

3.2 Welding message

For each weld bead (START – STOP sequence) the generator automatically sends a message identified by the topic <topic-prefix>/measureLog containing the summary data of the weld performed using the JSON format.

{

```
"arcOnCount" : 4079,
  "arcOnTime" : 1.3,
  "avgCurrent" : 25.6,
  "avgMotorCurrent" : 0.2,
  "avgVoltage" : 14.4,
  "avgWireSpeed" : 1,
  "energy" : 0,987,
  "qasOnTime" : 4.47,
  "id" : 0,
  "jobId" : 2,
  "jobsName" : "ABCXYZ01",
  "mainCurrentTime" : 1.29,
  "pieceId" : 5,
  "gcArcLostResult" : 0,
  "qcCurrentResult" : 0,
  "qcMainTimeResult" : 0,
  "qcResult" : 0,
  "qcVoltageResult" : 0,
  "startTimeStamp" : "2021-05-21T14:33:24",
  "suppliedGas" : 0.74,
  "suppliedWire" : 0,022,
  "suppliedWireWeight" : 0.13793999999999998,
  "trackingId" : "F2021003",
  "welder" : ""
  "weldingTime" : 4.49
}
```

The payload is similar to what you can obtain via the REST API:

GET https://<power-source-ip>/api/measurelogs

This message is *non-retained*, so clients must subscribe before the generator begins to weld.

Some fields of the structure (e.g. "trackingId") are populated only if certain functions are activated in the generator (e.g. *Production Mode* art. 817 option)

Some non-integer numeric fields have several decimal places and must be appropriately rounded on receipt. This is a defect attributable to the current library in use and may be fixed in future releases.

4 Test

The tests were carried out both in local network and in public network, using the **Eclipse Mosquitto** software as broker and the **MQTT.fx** software as client

